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Abstract. A recently developed procedure for solving the stationary Schrodinger equation 
in matrix representation form is proved to be useful in calculating quasibound energy 
levels. Results for a simple quantum mechanical model with potential energy function 
V = - r-' + Ar ( A  < 0) are shown to be very accurate. 

Burrows and Core (1984) showed that a technique for solving non-linear operator 
equations iteratively may be promising in obtaining bound-state energy eigenvalues 
from the stationary Schrodinger equation. The method was then modified by Fernandez 
et a1 ( 1985a, b) who obtained very accurate results for one-dimensional and central-field 
problems (Femandez et a1 1985a) and for two-dimensional anharmonic oscillators 
(Fembndez et a1 1985b). 

The iterative procedure has not been applied to continuum states because it is 
expected to be divergent. In spite of this, it may be useful in resonance calculations 
provided an appropriate truncation criterion is used. This fact is illustrated in the 
present paper by means of the model Hamiltonian 

H = f p 2  - r - ' +  Ar p = -iV (1) 

which was studied by several authors (see, for example, Quigg and Rosner 1979 and 
references therein, Austin 1981, Gerry and Silverman 1983) for positive and negative 
A values. The most accurate bound-state eigenvalues ( A  > 0) were obtained by Fernan- 
dez et a1 (1985a) using the iterative procedure. 

The Hamiltonian operator (1) has no bound states for negative A values and the 
resonance positions were accurately calculated by numerical integration of the 
Schrodinger equation and through rearrangement of the Rayleigh-Schrodinger per- 
turbation series as Pad6 approximants (Austin 1981). Therefore, it is a good test 
problem. 

In order to show how to calculate the quasibound energy levels of model (1) let 
us consider the more general eigenvalue problem 

AI+,)= EnBI+n) (2) 

where A and B are Hermitian operators. If I+,,) is expanded in an appropriate basis 
set of vectors Ii), I+,,) = Conlo)+ C1,,ll)+. . . , and the coefficient C,,,, is arbitrarily chosen 
to be equal to unity, then the secular equation for the remaining expansion coefficients 
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is found to be 
- 1  

En = ( E m  + i # n  Enicin) ( A n n  + i # n  c Anicin) 

Cj, = (Ajj - E,B,)-' C ( EnEji - Aji)  Cin j #  n 
i # J  

where A,  = (ilAl j )  and E,  = ( i l l 3  j ) .  This equation is easily solved by means of the 
Gauss-Seidel iterative method (Kuo 1965): 

Cji+''= ( A j j -  E:'Ea)-' (E' ," 'Bj i -Aj i )C( i t1)+  (E',"'Bj, - A j i ) C $ i ) )  j # n  
i < j  i>j 

(4b)  

provided E',"' # A,/ Ea for all s = 0, 1, . . . , and j # n. An appropriate starting point is 

The Schrodinger equation for H is easily shown to be a particular case of ( 2 )  where 
A =$rp - 1 + Ar2 and B = r. These operators can be written in terms of the three 
generators of the SO(2, 1) Lie algebra that is realised as K o = f ( g - ' r p 2 + g r ) ,  K l  = 
$(g- ' rp2  - g r )  and K ,  = r p - i  (Gerry and Silverman 1983, Fernandez er al 1985a), 
where the real positive parameter g plays an important role as shown below. Owing 
to this, the matrix elements of A and E in the basis set of eigenvectors of KO can be 
easily calculated. 

For negative A values the iterative procedure is divergent, disregarding the conver- 
gence-accelerating algorithm used, because the Hamiltonian operator (1) has no bound 
states. However, numerical calculation shows that for each g value an integer M exists 
so that 0, > Os+, (0, = [E',"'- E',"-')l) if s < M and 0, < Os+' if s > M .  It is therefore 
not unreasonable to think that ELM' may be the closest approximation to E ,  and that 
DM is approximately the error of the calculation. The g value is set so that M is as 
large as possible. 

Results for the ground state of (1) are shown in table 1 together with the correspond- 
ing g and M values. The present method seems to be more accurate than the Pad6 
approximant built from the Rayleigh-Schrodinger perturbation series (Austin 198 1). 

In closing, further comments about the present method appear to be necessary. 
When the quantum mechanical problem studied has bound states the convergence of 
the iterative procedure may probably be accelerated by the Newton-Raphson method 
or another appropriate algorithm. However, it is our aim to keep the method as simple 
as possible and to avoid manipulating large matrices. It is clear that the Gauss-Seidel 
technique fulfils this requirement completely. 

C!O'= In S. I n .  

2 

Table 1. Ground-state energy level of H = $ p 2  - r- '  + Ar. 

~~ 

A Present g M Pad6 approximantst Exactt 

-0.02 -0.530663 983 5318*6x 0.90 12 -0.530 663 984* 5 x lo-'' -0.530 664 
-0.546 592 -0.03 -0.546 591 51 *2  x lo-' 0.812 1 1  - 0 . 5 4 6 5 9 * 5 ~ 1 0 - ~  
-0.563 098 -0.04 -0.563 07 f 2 x 0.76 9 -0.5631 f 5 x lo-' 

?Austin (1981). 



A simple iterative method for resonance calculation 2077 

We do not actually know whether our choice of the adjustable parameter has been 
tried previously with regard to iterative procedures. We have certainly found it very 
useful in dealing with asymptotic perturbation series (Fernindez et a1 1984). Besides, 
g may have equally well been set so that D, = 0, but this leads to similar results provided 
a solution exists. 
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